National Institute of Technology Karnataka Course Plan and Evaluation Plan

Course Code	:	MA204
Course Title	:	Linear Algebra and Matrices
L-T-P	:	3-0-0
Credits	:	3
Teaching Department	:	Mathematical and Computational Sciences (MACS)
Evaluation Plan	:	10 % weightage for Quiz-I
		25~% weightage for Mid-Semester Exam
		15~% weightage for Quiz-II
		50~% weightage for End-Semester Exam
Attendance	:	Must have at least 75 $\%$
Course Instructors	:	Dr. Santhosh George (Course co-ordinator)
		Dr. P. Sam Johnson

Topics

- 1. Vector spaces: Definition, examples, subspaces, few elementary results with proof, linear dependence/independence of vectors, spanning set, basis, dimension, few results with proof.
- 2. Linear Equations: Systems of linear equations, elementary matrices, row reduction and echelon forms, matrix multiplication, Gaussian elimination, transposes, finding inverses by elementary row operations.
- 3. **Determinants:** Properties and formulas for the determinant, applications of determinant, Cramer's rule, finding the inverse of a partitioned matrix.
- 4. **Orthogonality:** Inner product, norm, orthogonal vectors, orthogonal basis, orthogonal subspaces, Cauchy Schwartz inequality, Gram-Schmidt process, least-square problem.
- 5. Linear Transformations: Definition, algebra of linear transformations, representation of transformations by matrices and vice-versa, null space, range space, few results on linear transformations and rank-nullity theorem with proofs, finding matrix of a linear transformation with respect to given bases.
- 6. **Eigenvalues and Eigenvectors:** The characteristic equation, finding eigenvalues and eigenvectors, properties of eigenvalues, diagonalization.
- 7. Symmetric Matrices and Quadratic Forms: Diagonalization of symmetric matrices, quadratic forms, positive definiteness, singular value decomposition.

Text Books

- 1. G. Hadley, Linear Algebra, Narosa 2000.
- 2. G. Strang, Linear Algebra and its Applications, Thomson Learning, 2003.
- 3. David C. Lay, Linear Algebra and its Applications, Pearson, 2008.
- 4. Ward Cheney and David Kincaid, Linear Algebra Theory and Applications, Jones & Bartlett Student Edition, 2007.
- 5. I.N. Herstein, Topics in Algebra, John Wiley & Sons, 1998.